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QUADRANTAL SYMMETRY CALCULATIONS FOR NONSYMMETRIC HALF-PLANE FILTERS*

Dennis M. Goodman

Lawrence LiverMore National Laboratory

Abstract

The conditions under which an all-pole, stable,
nonsymnetric half-plane filter has a quadrantally-
synrnetricmagnitude response are investigated.
It is shown that quadrantal synrnetryis obtained
if and only if the denominator of the transfer
function can be written as the product of two
functions; the inverse z-transforms of these two
functions have different regions of support and
one of them must obey a symmetry condition.

I. INTRODUCTION

The class of filters we will consider is the
class of stable, all-pole, nonsynmnetrichalf-
plane filters whose transfer functions have the
form

‘(21’22)‘+ (1)

where

B(z1,z2) =

(2)

~ b(o,n)z~~ fib(m.n)z~z~
n=(j m=l n=-L

Frm (2) we see that {b(m,n)} =
$-?[B(z1,z2)] has support on a bounded
subset of the shaded region on Figure 1. He will

\
assume that b(m,n)~ is a real sequence, and
since our fi ter is assixnedto be stable,
B(zlz2) mIIStsatisfy [l]:

B(0,z2)+OVZ2: /221 ~ 1 (

The quandrantal synmnetrycondition

lH(e-iu,e-iv)l= lH(e-iu,eiv)l

V(u,v) c [-lr,lr]z (

is a necessary requirement for several of the
more conmon frequency response specifications
(all circularly synsnetricfilters, certain fan
filters, etc.). It was shown in [2,3] that a
stable quarter-plane filter had a quadrantally
symmetric magnitude response if and only if its
transfer function was separable, here we show
that the conditions in the nonsyrmnetrichalf-
plane case are somewhat less restrictive.

In what follows we will make much use of the 2-D
homomorphic transforms given in operator notation
by

-1
4* ~n~

(5a)

~-l ~-le~p9 (5b)

where~ denotes Fourier transformation, andSF-l
denotes the inverse of~, i.e., Fourier series
expansion. The properties of these operators are
discussed at length in [1,4]; if~ is applied to
a given 2-O sequence, the result is a second 2-O
sequence, usually called the cepstrum of the
first. In words the cepstrum of a given sequence
is the inverse Fourier transform of the logarithm
of its Fourier transform. If {c(m,n)} is our
gfven sequence,Athen the notation for its cep-
strum will be{c(m,n)}. Me list ~flow the pro-
perties of the operatorsxand~ which are
of use to us, and refer the reader to [1,4] for
proofs.

(3b)

(4)

B(zI,z2) #0

V(Z19Z2):14 ‘1*124=1 (3a)
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Property a. X[{a(m,n)} ● {b(m,n)} ] = {~(m,n)j

+ {t(m,n)}

(* denotes convolution)

Property b. *-l[{$(m$n) } + {~(m,n)}l =

{a(m,n)}* {b(m,n)}

Property c. Let {b(m,n)} be as in (2) and

!f
assume that (z1,z ) satisfies
(3). Then { (m,n) is an 11
sequence and has support on the
shaded region shown in Figure 1.

Property d. Let Abe a subset of the 2-O
lattice which has the following
property: if {a(m,n)} and {b(m,n)~
are arbitrary sequences with sup-
port onA, then th ir convolution,

f{a(m,n)} * {b(m,n) , lso has sup-
p~rt onA. i!Then if { (m,n)~ is an
1 sequence with s pport onA, so
is {c(m,n)} =fl-l{l(m,n)}.

II. A NECESSARY AND SUFFICIENT CONDITION FOR
QUAORANTAL SYMMETRY

Since we have assumed that (1) is quadrantally
synunetric,

lB(e-iu,e-iV)l2 =lB(e-iu,eiv)12

V(u,v) c [-m,lr]* (6)

Let {g(m,n)\ 4fF-l{lB(e-iu,e-iv)12}, then

{d(m.n)~ ‘ST-l{loglB(e-iu,e-iv)12}, and

by (6),

~(m,n) =~(m,-n)

V(m,n) (7)

Furthermore, since b(m,n) is assumed to be
real, ~9(m,n)} = {b\m,n)} 1 {b(in,-n)~; hence by
proper y a.

$(m,n)~ = $(m,n)~ + {$(+n,-n)} (8)

The fact that (1) is assumed to be stable implies
(by property c.) that {b(m,n)} has support on the
shaded region of Figure 1; it follows from (7)
and (8) that

~(m,n) =$(m.-n)

V(m,n) : m >1. (9)

We now decompose $(m,n) as follows:

write

{S(m,n)t = {t(m,n)~ + {t(n)} (lo)

where {~(m,n)} has support on the shad d region
#shown In Figure 2 and the support of { (n)} is

restricted to the non-negative n-axis, i.e.,

A$n)#Oonlyifnz O. From (9) it follows that
(m,n) = ~(m,-n) for a 1 (m,n). Since the

iregions of support of { (m,n)} and {d(n)~ both
satisfy the condition give-~ $ ProPerty d., it
follows that {c(m,n)} =X { (m,n)~ has support

‘q{d(n)} has support on the non-negative
on t eAshaded region of Figure 2 and that {d(n)}
=4
n-axis. Furthermore, it is obvi us that {c(m,n)}

8has the same symnetry property{ (m,n)~ Pos-
sessed, i.e , c(m,n) = c(m,-n) for all (m,n).
ApplyingA-l to (10) yields

{b(m,n)} = {c(m,n)} * {d(n)} (11)

We now wish to show that the two sequences on the
RHS of (11) have bounded support. This is easy
~n{d(n)}: keeping in mind that c(O,n)# Oonly

= O, it follows that:

Vn

hence from (2) we see that d(n) # Oonly if

(12)

B{ (12) and (3b), if follows that {d(n)} has an
1 inverse, {d(n)~- , which also has support
restricted to the non-negative n-axis.
Convolving both sides of (8) with {d(n)}-l
yields:

{b(m,n)\ * {d(n)~-l = {c(m,n)} (13)

if we keep in mind t e regions of support of
~;$,~~~~nd {d(n)l-~, it is obvious from (2) and

c(m,n) = O Vm>M (14a)

and c(m,n) = O Vn.c -L (14b)

since c(m,n) = c(m,-n) V (m,n) it follows that

c(m,n) = O &n>L (14C)

Hence we have shown that both {c(m,n)} and {d(n)}
have bounded support.

Taking the z-transform of equation (11) yields

B(z1,z2) = C(Z1, Z2)INZ2) (15)

and, by applying the conditions in equation (3),
we see that

C(Z1,Z2)+0

y(zl,zz): [211 = 1, 1221 = 1 (16a)

D(z2) # O VZ2: 1221 ~ 1 (16b)

We sunmnarizeour discussion in the following
theorem.

Theorem: Let the nonsynmnetrichalf-plane filter
described by (1) and (2) obey the stability con-
dition (3) and the quadrantal synsnetrycondition
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(4). Then 6(21,22 must be of the fo~
C(ZI,Z2)D(Z2)where D(z2) is a polynomial
in Z9 and satisfies the stability condition

(19)

Es = Y [b(m,n) - b + (m,n)],
(166}; C(Z ,22) satisfies the stability -

1condition 16a). and jc(m.n)] =3-1[C(Z1,Z2)] has m,n
support on-a bounded iubset”hf ~he region ~hown
in Figure 2 and obeys the symnetry condition
c(m,n) = c(m,-n)y(m,n).

# By considering equation (11) it is possible to
place an additional constraint on the support of

‘9 {d(n)~ and as a result say something about the
support of {b(m,n)~.

*
Corollary: Under the conditions stated in the
above theorem, B(zI,z2) must be of the fo~

8(21s27) =.-

whereNzLandP=N-L.

(17)

Proof: Assume d(n) # Oonly if 0s n s P s N.
~egion of support resultin from the con-

?volution of {c(m,n)} and {d(n) is shown in
Figure 3. Since P + L = N, the result follows.

III. INCORPORATIONOF THE SYNMETRY CONDITIONS
GN ALGORITHM

In this section we discuss how the results ob-
tained in Section 11 could be incorporated into
the design algorithm described in [6] and what
advantages might result. We will asume that an
all-pole filter is being designed; however, if a
non-unity denominator is desirable, there are
synmetry conditions for it as well [2].

The algorithm developed in [6] combines a
non-linear optimization algorithm with a spectral
factorization procedure to produce filters which
are both stable and good approximations to the
desired response in a weighted least-squares

This is accomplished by minimizing the
%!~(~ed sum of two errors,~aand~s. ~a

n is the approximation error.
*

6
&a = ~ bl(”m~n) [S(”m7n) -

#
m,n *

IB(e ‘,e ‘)11 2S

(18)

1Uhere {B+ .1 22)] is the spectral factor of
IB(z,;z2) 2 ~hich has support on the region
shown in ig. 1 and which satisfies the stability
conditions of Eq. (3). If{B(zl,z2 } also

&
i)satisfies Eq. (3), then {b m,n)} = b+(m,n).

The idea behind includinq = in the error unc-

1}ion is that by driving&-~o zero we force
b(m,n) to be stable. A discussion of spectral

factorization is contained in [1, 4, 6].

The simplest way to apply the results of Section
11 to any 2-D design algorithm ( when such an
algorithm is used to design quadrantally sym-
tric filters) is to reconfigure the sut)portof

[ Fig }3b(m,n) from that given in Eq. (2) to that shown
This step does not necessarily reduce

the nu~be~ of non-zero filter coefficients, but
it does place them where they will do the most
good.

Assuming that the support of {b(m,n)} has been
reconfi ured, a second step wbuld be to express
.{b(m,n)~as shown in Eq. (11), and use the terms
of {c(m n)} and {d(n)} (rather than those of
{b~m,n)f as parameters in the optimization algo-
rithm. By using the symnetry constraints on
j}c(m,n) ,we can reduce the number of parameters
rom M(P+2L) + (P+l) to ML + (P+l). This reduc-

tion is particularly important since most op-
timization algorithms must invert a matrix whose
size equals the number of parameters. This
change in the filter design algorithm can be made
.(assuming that the algorithm was set up to use

11
‘the coefficients of b(m,n) as parameters) by a
simple application o the c ain rule. It is also
possible to reduce the computational burden in

{\
computing the FFT of b(m,n) by computin it as

[!
the product of”the FF ‘s of c(m,n)~ and d(n)
and taking advantage of symmetry to reduc by ne
half the number of 1-0 cow FFT’s needed to
compute the 2-O FFT of {c(m,n)} .
A third and more sophisticated step would be to
use the above two steps and also change es to:

(20)

~s = ~ [c(m,n)-c + (m,n)]2.

m,n

kwhere (um,vn)~ is a discrete set of frequenc”les
over w ich the magnitudes response is to be cwtimized,
U(%,vn) is a weighting function, S(um,vn) is
the desired magnitude response, and B(zl z*) 4s
defined in Section II. &sis the “stabili~y” error:

The solution to which the algorithm would con-
verge would uarantee the stability of .{c(m,n)},

!but not {d(n ~ . However, {d(n)} is a 1-0
filter and could be stabilized by ‘pole flipping”
[7). This third step saves computation time,
because to compute the numerical derivative it is
‘necessarytodo a complete spectral factorization



.—
. as each parameter is perturbed. This step re-

duces the number of spectral factorizattons per
derivative calculation by P. Furthermore, the
su port of {c(m,n)} is smaller than that of
{b~m,n~ so problems with aliasing should be
reduce .
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